
11/15/2024 1

Unit 3
Deadlocks

Main Topics
System Model

Deadlock Characterization

Methods for Handling Deadlocks

Deadlock Prevention

Deadlock Avoidance

Deadlock Detection

Recovery from Deadlock
11/15/2024

Chapter Objectives

To develop a description of deadlocks, which prevent sets of

concurrent processes from completing their tasks

To present a number of different methods for preventing or

avoiding deadlocks in a computer system.

11/15/2024

System Model

System consists of resources

Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

Each resource type Ri has Wi instances.

Each process utilizes a resource as follows:

request

use

release

Request

Use

Release

System call

System call

Open()

Close()

Allocate()

Free()

Wait()

Signal()

11/15/2024

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

Mutual exclusion: only one process at a time can use a resource

Hold and wait: a process holding at least one resource is waiting to acquire

additional resources held by other processes

No preemption: a resource can be released only voluntarily by the process holding

it, after that process has completed its task

Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes such that

P0 is waiting for a resource that is held by P1, P1 is waiting for a resource that is

held by P2, …, Pn–1 is waiting for a resource that is held by Pn, and Pn is

waiting for a resource that is held by P0.

11/15/2024

Resource-Allocation Graph

A set of vertices V and a set of edges E.

V is partitioned into two types:

P = {P1, P2, …, Pn}, the set consisting of all the processes in the system

R = {R1, R2, …, Rm}, the set consisting of all resource types in the system

request edge – directed edge Pi Rj

assignment edge – directed edge Rj Pi

11/15/2024

Resource-Allocation Graph (Cont.)

Process

Resource Type with 4 instances

PiPi requests instance of Rj

Rj

PiPi is holding an instance of Rj

Rj

11/15/2024

Example of a Resource Allocation Graph

P1 P2 P3

R1 R3

R2 R4

A set of vertices V and a set of edges E.

V is partitioned into two types:

P = {P1, P2, …, Pn}, the set consisting of all

the processes in the system

R = {R1, R2, …, Rm}, the set consisting of all

resource types in the system

request edge – directed edge Pi Rj

assignment edge – directed edge Rj Pi

E={P1R1, P2 R3, R1 P2, R2 P2,

R2 P1, R3 P3}

11/15/2024

Graph With A Cycle: with Deadlock and with No Deadlock

R2

R1

P1

P2

P3

P4

P1 P2 P3

R1 R3

R2 R4

If graph contains a cycle

if only one instance per

resource type, then

deadlock

if several instances per

resource type,

possibility of deadlock

11/15/2024

Methods for Handling Deadlocks

Ensure that the system will never enter a deadlock state

Allow the system to enter a deadlock state and then recover

Ignore the problem and pretend that deadlocks never occur in the system;

used by most operating systems, including UNIX

11/15/2024

Deadlock Prevention

Restrain the ways request can be made

Eliminate Mutual Exclusion – It is not possible to dis-satisfy the mutual exclusion

because some resources, such as the tape drive and printer, are inherently non-

shareable.

Eliminate Hold and Wait – must guarantee that whenever a process requests a

resource, it does not hold any other resources

Require process to request and be allocated all its resources before it begins

execution, or allow process to request resources only when the process has none

Low resource utilization; starvation possible.

11/15/2024

Deadlock Prevention (Cont.)

Eliminate No Preemption –

If a process that is holding some resources requests another resource that

cannot be immediately allocated to it, then all resources currently being

held are released

Preempted resources are added to the list of resources for which the

process is waiting

Process will be restarted only when it can regain its old resources, as

well as the new ones that it is requesting

11/15/2024

11/15/2024

Pi PjR4

R1

R2

R3

Bad Resource

Utilization

Pk
Pl
Pm

Pi

Deadlock Prevention (Cont.)

Eliminate Circular Wait – impose a total ordering of all

resource types, and require that each process requests

resources in an increasing order of enumeration.

Each resource will be assigned a numerical number. A

process can request the resources to increase/decrease.

order of numbering. For Example, if the P1 process is

allocated R3 and R4 resources, now next time if P1

asks for R2, R1 lesser than R3 such a request will not

be granted, only a request for resources more than R4

will be granted.

R
4

R
5

R
6

R
1

R
2

R
3

P
i

11/15/2024

Deadlock Avoidance

Requires that the system has some additional a priori information

available

Simplest and most useful model requires that each process declare the maximum

number of resources of each type that it may need

The deadlock-avoidance algorithm dynamically examines the resource-allocation

state to ensure that there can never be a circular-wait condition

Resource-allocation state is defined by the number of available and allocated

resources, and the maximum demands of the processes.

11/15/2024

Safe State

When a process requests an available resource, system must decide if immediate allocation leaves the

system in a safe state

System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL the processes in the

systems such that for each Pi, the resources that Pi can still request can be satisfied by currently

available resources + resources held by all the Pj, with j < I

That is:

If Pi resource needs are not immediately available, then Pi can wait until all Pj have finished

When Pj is finished, Pi can obtain needed resources, execute, return allocated resources, and

terminate

When Pi terminates, Pi +1 can obtain its needed resources, and so on

11/15/2024

Basic Facts

If a system is in safe state no deadlocks

If a system is in unsafe state possibility of deadlock

Avoidance ensure that a system will never enter an unsafe

state.

11/15/2024

Avoidance algorithms

Single instance of a resource type

Use a resource-allocation graph

Multiple instances of a resource type

Use the banker’s algorithm

11/15/2024

Resource-Allocation Graph Scheme

Claim edge Pi Rj indicated that process Pj may request resource Rj;

represented by a dashed line

Claim edge converts to request edge when a process requests a resource

Request edge converted to an assignment edge when the resource is

allocated to the process

When a resource is released by a process, assignment edge reconverts to a

claim edge

Resources must be claimed a priori in the system

11/15/2024

Resource-Allocation Graph

P1 P2

R1

R2

Clame Clame

RequestAssign

Safe P1 P2

R1

R2

Clame Assign

RequestAssign

Unsafe

The resource allocation graph (RAG) is

used to visualize the system’s current

state as a graph. The Graph includes all

processes, the resources that are

assigned to them, as well as the

resources that each Process requests.

If there are fewer processes, we can

quickly spot a deadlock in the system by

looking at the graph rather than the

tables we use in Banker’s algorithm.

11/15/2024

State In Resource-Allocation Graph

11/15/2024

P1

P2

P0
5

2

2

Allocated instance

Free instance

P0

P1

P2

Max Need
10

4

9

Current Need
5

2

2
P1

P2

P0
5

2

4

W

W

P1

P2

P0
5

2

0

Allocated instance

Free instance
P1

P2

P0
10

2

Allocated instance

Free instance

W

<P1, P0, P2>

Unsafe State In Resource-Allocation Graph

11/15/2024

P1

P2

P0
5

2

2

Allocated instance

Free instance

P0

P1

P2

Max Need
10

4

9

Current Need
5

2

2
P1

P2

P0
5

3

2

Allocated instance

Free instance
P1

P2

P0
5

3

Allocated instance

Free instance

W

W

<P1, P2, P1, P2, P0>
<P1, P2, P1, P2, P0>

Resource-Allocation Graph Algorithm

Suppose that process Pi requests a resource Rj

The request can be granted only if converting the request edge to

an assignment edge does not result in the formation of a cycle in the

resource allocation graph

11/15/2024

Banker’s Algorithm

11/15/2024

A B C
Creditors

SUMx y z Cash

Debtor applies for a loan: W=100 Cash-SUM>=W
?

Banker’s Algorithm

Multiple instances

Each process must a priori claim maximum use

When a process requests a resource it may have to wait

When a process gets all its resources it must return them in a

finite amount of time

11/15/2024

Data Structures for the Banker’s Algorithm

11/15/2024

Available [j]={ 4, 6, 2, 1, 7}

Available :It is a 1-D array of size ‘m’ indicating the number of

available resources of each type.

Available[j] = k means there are ‘k’ instances of resource type R j

Data Structures for the Banker’s Algorithm

11/15/2024

Resource

P
ro

ce
ss

P1

P2

P3

P4

R1 R2 R3 R4 Ri

Pi

2 0 5 3 1

3 2 6 0 2

1 1 4 3 7

0 2 2 3 2

1 3 2 6 4

Max[i, j] = k means process Pi may request at

most ‘k’ instances of resource type Rj.

Allocation[i, j] = k means process Pi is currently

allocated ‘k’ instances of resource type Rj

Need [i, j] = k means process Pi currently

needs ‘k’ instances of resource type Rj

Need [i, j] = Max [i, j] – Allocation [i, j]

Safety Algorithm
1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:

(a) Finish [i] = false

(b) Needi Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true

go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

11/15/2024

Resource-Request Algorithm for Process Pi

 Requesti = request vector for process Pi. If Requesti [j] = k then process Pi wants k instances of resource

type Rj

1. If Requesti Needi go to step 2. Otherwise, raise error condition, since process has exceeded its

maximum claim

2. If Requesti Available, go to step 3. Otherwise Pi must wait, since resources are not available

3. Pretend to allocate requested resources to Pi by modifying the state as follows:

 Available = Available – Requesti;

 Allocationi = Allocationi + Requesti;

 Needi = Needi – Requesti;

If safe the resources are allocated to Pi

If unsafe Pi must wait, and the old resource-allocation state is restored

11/15/2024

Example of Banker’s Algorithm

5 processes P0 through P4;

3 resource types: A (10 instances), B (5instances), and C (7 instances)

Snapshot at time T0:

Allocation Max Need Available

A B C A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3 3 3 2

P1 2 0 0 3 2 2 1 2 2
P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 2 1 1

P4 0 0 2 4 3 3 4 3 1

11/15/2024

Example: P1 Request (1,0,2)

Check that Request Available (that is, (1,0,2) (3,3,2) true

 Allocation Need Available

 A B C A B C A B C

 P0 0 1 0 7 4 3 2 3 0

 P1 3 0 2 0 2 0

 P2 3 0 2 6 0 0

 P3 2 1 1 0 1 1

 P4 0 0 2 4 3 1

Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> satisfies safety requirement

Can request for (3,3,0) by P4 be granted?

Can request for (0,2,0) by P0 be granted?

11/15/2024

Deadlock Detection

Allow system to enter deadlock state

Detection algorithm

Recovery scheme

11/15/2024

Single Instance of Each Resource Type

Maintain wait-for graph

Nodes are processes

Pi Pj if Pi is waiting for Pj

Periodically invoke an algorithm that searches for a cycle in the graph. If

there is a cycle, there exists a deadlock

An algorithm to detect a cycle in a graph requires an order of n2

operations, where n is the number of vertices in the graph

11/15/2024

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

P1 P2 P3

P5

P4

R1

R3

R2

R4

R2

P1 P2 P3

P4

P5
Suitable for Single

instance of a resource

type

11/15/2024

Several Instances of a Resource Type

The algorithm employs several times varying data structures:

Available: A vector of length m indicates the number of available resources

of each type.

Allocation: An n*m matrix defines the number of resources of each type

currently allocated to a process. The column represents resource and rows

represent a process.

Request: An n*m matrix indicates the current request of each process. If

request[i][j] equals k then process P i is requesting k more instances of

resource type R j .

11/15/2024

Detection Algorithm

Let Work and Finish be vectors of length m and n respectively. Initialize Work= Available .

For i=0, 1, …., n-1 , if Request i = 0, then Finish[i] = true; otherwise, Finish[i] = false.

Find an index i such that both

a) Finish[i] == false

b) Request i <= Work

If no such i exists go to step 4.

Work= Work+ Allocation i

Finish[i]= true

Go to Step 2.

If Finish[i]== false for some i, 0<=i<n, then the system is in a deadlocked state. Moreover,

if Finish[i]==false the process P i is deadlocked.

11/15/2024

Example of Detection Algorithm
Five processes P0 through P4; three resource types

A (7 instances), B (2 instances), and C (6 instances)

Snapshot at time T0:

Allocation Request Available Resource Instances

A B C A B C A B C 7 2 6

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

Sequence <P0, P2, P3, P1, P4> will

result in Finish[i] = true for all i

11/15/2024

Example of Detection Algorithm
P2 requests an additional instance of type C

Snapshot at time T0:

Allocation Request Available Resource Instances

A B C A B C A B C 7 2 6

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 1 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

State of system?

Can reclaim resources held by process P0,

but insufficient resources to fulfill other

processes; requests

Deadlock exists, consisting of processes

P1, P2, P3, and P4

11/15/2024

Detection-Algorithm Usage

When, and how often, to invoke depends on:

How often a deadlock is likely to occur?

How many processes will need to be rolled back?

one for each disjoint cycle

If detection algorithm is invoked arbitrarily, there may be many cycles in

the resource graph and so we would not be able to tell which of the many

deadlocked processes “caused” the deadlock.

11/15/2024

Recovery from Deadlock:

Process Termination

Abort all deadlocked processes

Abort one process at a time until the deadlock cycle is eliminated

In which order should we choose to abort?

Priority of the process

How long process has computed, and how much longer to completion

Resources the process has used

Resources process needs to complete

How many processes will need to be terminated

Is process interactive or batch?

11/15/2024

Recovery from Deadlock: Resource Preemption

Selecting a victim – minimize cost

Rollback – return to some safe state, restart process for that state

Starvation – same process may always be picked as victim, include number

of rollback in cost factor

11/15/2024

