Operating Systems

Dr. J.M. Khalifeh

Unit 3
Deadlocks

)

deola
ajliadl

Operating Systems

Dr. J.M. Khalifeh

11/15/2024

Main Topics
System Model

Deadlock Characterization
Methods for Handling Deadlocks
Deadlock Prevention
Deadlock Avoidance
Deadlock Detection
Recovery from Deadlock,

[y

doola
ojlioJl

6666H6666666666666066066660606|06666660666666666060666666666

11/15/2024

Operating Systems

Dr. J.M. Khalifeh

Chapter Objectives

)

deola
ojliall

* T0 develop a description of deadlocks, which prevent sets of

concurrent processes from completing their tasks

** T0 present a number of different methods for preventing or

avoiding deadlocks in a computer system.

Operating Systems

Dr. J.M. Khalifeh

11/15/2024

System Model

» System consists of resources
* Resource types R1, R2, . . ., R
v CPU cycles, memory space, 1/0 devices
“* Each resource type Ri has Wi instances.
* Each process utilizes a resource as follows:
> request
> use

> release

Release

System call

System call

Open()
Allocate()
Wait()

Close()
Free()
Signall)

6666H6666666666666066066660606|06666660666666666060666666666

11/15/2024

Deadlock Characterization lZ}
. *®Deadlock can arise if four conditions hold simultaneously. :ﬁlﬂ_}‘l
E;" » Mutual exclusion: only one process at a time can use a resource
_Ug]' » Hold and wait: a process holding at least one resource is waiting to acquire
g additional resources held by other processes
° » No preemption: a resource can be released only voluntarily by the process holding
it, after that process has completed its task,
5 » Circular wait: there exists a set (PO, P1, ..., Pn} of waiting processes such that
ii PO is waiting for a resource that is held by P1, P1 is waiting for a resource that is
% held by P2, ..., Pn—1 is waiting for a resource that is held by Pn, and Pn is
a

waiting for a resource that is held by P0.

11/15/2024 5

Resource-Allocation Graph)
daola
o Aset of vertices V and a set of edges E. e
2 ¢ Vis partitioned into two types:
% »P={[P1, P2, ..., Pnj, the set consisting of all the processes in the system
5"1 R=[R1, R2, ..., Rmj, the set consisting of all resource types in the system
“ request edge — directed edge Pi —> Rj
“ assignment edge — directed edge Rj — Pi
;:

666066666666666666666666066|66666666666666666666666060

11/15/2024 6

11/15/2024

© .
© Resource-Allocation Graph (Cont.) IZ;
© oiah
o Process .
o
o2 , , (]
©C Resource Type with 4 instances LR
oo
.
N Pi requests instance of Rj .—» "
© .
©
©§5 8
© s
or Pi is holding an instance of Rj .—> =
O
3 R
©
@ 11/15/2024 7
© . i
© Example of a Resource Allocation Graph lZ}
aaola
g 0 R1 R3 A set of vertices V and a set of edges E. e
8 7 LN * Vis partitioned into two types:
i
g 2 »P=(P1, P2, ..., Pnj, the set consisting of all
g § the processes in the system
g R=[R1, R2, ..., Rmj, the set consisting of all
g resource types in the system
g . * request edge — directed edge Pi —> Rj
g 3 % assignment edge — directed edge Rj — Pi
©s \:/ e > E={PI—>R]I, P2 —> R3, R1—> P2, R2—> P2,
o5 &2 ® | & R2—> P1, R3 —> P3)
©
©
©

Graph With A Cycle: with Deadlock and with No Deadlock Q}

©
©
©
©
o
© 2
0% i If graph contains a cycle
ot &1 ~
©5 if only one instance per
g resource type, then
g deadlock,
) if several instances per
© 5 resource type,
© = o ° Fe OF
O = ®R2 5 possibility of deadlock,
©=
o7 ®? __ R
@ (]
©
©
@ 11/15/2024 9
© _ ,
© Methods for Handling Deadlocks %)
© 5 ¢ Ensure that the system will never enter a deadlock state
oa
g o % Allow the system to enter a deadlock state and then recover
@]
©
©
© R .
o % ignore the problem and pretend that deadlocks never occur in the system;
N 2 used by most operating systems, including UNILX
© =
©=
O
@]
©
©
©

11/15/2024 10

well as the new ones that it is requesting

© .
© Deadlock Prevention)
© deola
N opLo8
© 5 Restrain the ways request can be made
o2
© 2 Elminate Mutual Exclusion — It is not possible to dis-satisfy the mutual exclusion
O £ .) .
© & because some resources, such as the tape drive and printer, are inherently non-
p=5)
© shareable.
©
© *®*Eliminate Hold and Wait — must guarantee that whenever a process requests a
© .
© resource, it does not hold any other resources
©g
O » Require process to request and be allocated all its resources before it begins
O =
©= execution, or allow process to request resources only when the process has none
O
g o » Low resource utilization; starvation possible.
©
@ 11/15/2024 1
© , ,
© Deadlock Prevention (Cont.) IZ]
© doola
N I
o & Eliminate No Preemption —
@ . .
© 5 » If a process that is holding some resources requests another resource that
oL p g g
T
o cannot be immediately allocated to it, then all resources currently being
@]
©
O held are released
©
N » Preempted resources are added to the list of resources for which the
N $ process is waiting
© < : . o
o s » Process will be restarted only when it can regain its old resources, as
oa
©
©
©

11/15/2024 12

Pl

11/15/2024

©
©
O deola
© B)liall
o
0,
of IR ——| ®
0§ ;
©
© R3
©
O
o5
O Bad Resource
e Utilization @i
@ [m]
©
©
@ 11/15/2024 13
© . .
© Deadlock Prevention (Cont.) %
doola
g) ¢ Eliminate Circular Wait — impose a total ordering of all i~ Sykiadl
g 5 resource types, and require that each process requests
(@) ‘E resources in an increasing order of enumeration. e }
© = . . .
g o » Each resource will be assigned a numerical number. A "=
o° process can request the resources to increase/decrease. &
© . . .
© order of numbering. For Example, if the P1 process is
g allocated R3 and R4 resources, now next time if P1 &
g g asks for R2, R1 lesser than R3 such a request will not j/ %
g &
g : be granted, only a request for resources more than R4
© : will be granted.
©° =~
© &
T =
©

Operating Systems

Dr. J.M. Khalifeh

Deadlock Avoidance)
dasla
** Requires that the system has some additional a priori information e

available

» Simplest and most useful model requires that each process declare the maximum
number of resources of each type that it may need

» The deadlock-avoidance algorithm dynamically examines the resource-allocation
state to ensure that there can never be a circular-wait condition

» Resource-allocation state is defined by the number of available and allocated

resources, and the maximum demands of the processes.

Operating Systems

Dr. J.M. Khalifeh

11/15/2024 15

Safe State lZ]

deola
6jlioll

“* When a process requests an available resource, system must decide if immediate allocation leaves the

system in a safe state

» System is in safe state if there exists a sequence <®1, P2, ..., Pn>of ALL the processes in the
systems such that for each i, the resources that i can still request can be satisfied by currently
available resources + resources held by all the ®j, withj <1

% That is:
» If Pi resource needs are not immediately available, then Pi can wait until all ®f have finished

¥ When ®j is finished, i can obtain needed resources, execute, return allocated resources, and

terminate

» When @i terminates, Pi +1 can obtain its needed resources, and so on

6666H6666666666666066066660606|06666660666666666060666666666

11/15/2024 16

Operating Systems

Dr. J.M. Khalifeh

Basic Facts [Z

¢ If a system is in safe state = no deadlocks
“* If a system is in unsafe state = possibility of deadlock,

“* Avoidance = ensure that a system will never enter an unsafe

State.

Operating Systems

Dr. J.M. Khalifeh

11/15/2024 17

Avoidance algorithms PA

doola
e
** Single instance of a resource type

» Use a resource-allocation graph

* Multiple instances of a resource type

» Use the banker s algorithm

6666H6666666666666066066660606|06666660666666666060666666666

11/15/2024 18

© . _
© Resource-Allocation Graph Scheme [Z
© doola
g] JLiTu_J[
. s Claim edge Pi—> Rj indicated that process Pj may request resource Rj;
< o represented by a dashed line

B .
© 2« Claim edge converts to request edge when a process requests a resource

O
© . g
© **Request edge converted to an assignment edge when the resource is
©
N allocated to the process
O When a resource is released by a process, assignment edge reconverts to a
© = :
©os claimedge
O
N © % Resources must be claimed a priori in the system
g 11/15/2024 19
© . _
© Resource-Allocation Graph %
© doola
N Sicoh
© E R1 The resource allocation graph (RAG) is
g @ used to visualize the system’s current
g -é Assign Request_gssign Request state as a graph. The Graph includes all
© § processes, the resources that are
g Safe assigned to them, as well as the
g \ , / \ resources that each Process requests.
O \ \ If there are fewer processes, we can
©3% Clame / Clame Clame N Assign f Jewerp .
O7s N / N quickly spot a deadlock in the system by
g % ®2) looking at the graph rather than the
g A tables we use in Banker’s algorithm.
©
©
@ 11/15/2024 20

State In Resource-Allocation Graph)

- w it
i 2
k= Max Need Current Need
3 00O PO 10 5
P j 2

./ 000 P1
. o Free instance P2 9 2
g o Allocated instance
% <®1, PO, P2>

11/15/2024 21

Unsafe State In Resource-Allocation Graph lZ}

doola

EJLi_uJI
& 3
2 Max Need Current Need
2 000 PO 10 s
© 5 cee
(O X J
.‘/ oo P14 2
W o Free instance P2 9 2

e Allocated instance ol -

<P1, P2, P1, P2, PO>

Dr. L.M. Khalifeh

6666H6666666666666066066660606|06666660666666666060666666666

11/15/2024 22

Operating Systems

Dr. J.M. Khalifeh

Resource-Allocation Graph Algorithm [Z
* Suppose that process Pi requests a resource Rj
** The request can be granted only if converting the request edge to
an assignment edge does not result in the formation of a cycle in the

resource allocation graph

Operating Systems

Dr. J.M. Khalifeh

11/15/2024 23

Banker’s Algorithm %)
Creditors
A B C
X y z SUM Cash

P
Debtor applies for a loan: W=100 Cash-SUM>=1/

6666H6666666666666066066660606|06666660666666666060666666666

11/15/2024 24

Operating Systems

Dr. J.M. Khalifeh

Banker’s Algorithm >
“* Multiple instances
* Each process must a priori claim maxgmum use
“* When a process requests a resource it may have to wait
“* When a process gets all its resources it must return them in a

finite amount of time

Operating Systems

Dr. J.M. Khalifeh

11/15/2024 25

Data Structures for the Banker’ s Algorithm 2y

doola
ojlioJl

Awailable : 1t is a 1-D array of size ‘m’ indicating the number of
available resources of each type.

Awailable[j | = k means there are ‘R instances of resource type R j

Available[7]1={ 4,6, 2, 1, 7}

6666H6666666666666066066660606|06666660666666666060666666666

11/15/2024 26

Data Structures for the Banker’ s Algorithm IZA

S Resauce ~ Max(i, j | = k means process Pi may request at
& RIRZ RS RE R most ‘R instances of resource type Rj.
e @2 o0 5 3 -1 P
® .
8 § P213 2 6 0 2 Allocation[1, j | = kK means process Pi is currently
§ ®311 1 4 3 7 | allocated ‘R instances of resource type Rj
P40 2 2 3 2
< e e Need [1, j | =k means process Pi currently
g @1 3 2 6 -4 | needs R instances of resource type Rj
=
R Need [i, j|=Max[i, j]—Allocation [, j]
11/15/2024 27
Safety Algorithm lZl
1. Let Work and Finish be vectors of length m and n, respectively. Initialize: :m

Operating Systems

Dr. J.M. Khalifeh

» Work = Available

» Finish [i] = false fori=0, 1, ..., n- 1
2. Find an i such that both:

> (a) Finish [i] = false

> (b) Needi < Work,

» If no such i exsts, go to step 4
3. Work = Work + Allocationi

» Finishfi] = true

» go to step 2

4. If Finish [i] == true for all'i, then the system is in a safe state

6666H6666666666666066066660606|06666660666666666060666666666

11/15/2024

28

Operating Systems

Dr. J.M. Khalifeh

Resource-Request Algorithm for Process Pi Q}
% Requesti = request vector for process Pi. If Requesti [j] = R then process Pi wants R instances of resour;ce .
type R
> 1. If Requesti < Needi go to step 2. Otherwise, raise error condition, since process hias exceeded its
maximum claim

» 2. If Requesti < Available, go to step 3. Otherwise Pi must wait, since resources are not available

» 3. Pretend to allocate requested resources to Pi by modifying the state as follows:

o Available = Available — Requesti;
< Allocationi = Allocationi + Requesti;
R Needi = Needi — Requesti;

v’ If safe = the resources are allocated to ®

v’ If unsafe = ®i must wait, and the old resource-allocation state is restored

11/15/2024 29

Operating Systems

Dr. J.M. Khalifeh

Example of Banker’ s Algorithm Q]
5 processes PO through P4;]

3 resource types: A (10 instances), B (Sinstances), and C (7 instances)
Snapshot at time T0:

Allocation Max Need Awvailable
ABC ABC ABC ABC
®0 010 753 743 332
®1 200 322 122
P2 302 902 600
P33 211 222 211
P4 002 433 431

6666066666666666666060606H66606|6666066666666606666666666066

11/15/2024 30

Example: P1 Request (1,0,2)

)

11/15/2024

32

©
©
O —
© :fliqu
g £ % Check that Request < Available (that is, (1,0,2)< (3,3,2)=> true
o8 * AllocationNeed — Available
©0¢ « ABC ABC ABC
g :é &) 010 743 230
© § 23 @1 302 020
© @ P2 302 600
© 23 P3 211 011
© .
© P4 002 431
@ e
© E “* Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> satisfies safety requirement
o
© E ** Can request for (3,3,0) by P4 be granted?
P
O “* Can request for (0,2,0) by PO be granted?
©
@ 11/15/2024 3il
© .)
© Deadlock Detection D
: i
ojlioJl
© o« o)L
© é “* Allow system to enter deadlock state
© =2
@ w
o2
08 . . .
© 2 **Detection algorithm
O
©
©
@ \/
© % Recovery scheme
(0]
o
O =
©
@]
©
©
1]

R? Resource-Allocation Graph R?

Corresponding wait-for graph

11/15/2024

© .

© Single Instance of Each Resource Type)
© — o
©¢ * Maintain wait-for graph =
g 8 » Nodes are processes

©F >Pio>® if Piiswaiting for &

Do

~ © s @eriodically invoke an algorithm that searches for a cycle in the graph. If

g there is a cycle, there exists a deadlock,

> § **An algorithm to detect a cycle in a graph requires an order of n2

O . . . M

©< operations, where n is the number of vertices in the graph

O =

O

@ [m]

©

©

@ 11/15/2024 33

@ . . "
© Resource-Allocation Graph and Wait-for Graph P
: @ s
@ E S . 6[. —— o
o5 uitable for Single

© ;ﬂ R1 R4 . instance of a resource

o2 R} ore

O3

0§ R

£ @ B

©

c @ @

03

©%

o<

O = < <

©) .

@]

©

©

©

34

Operating Systems

Dr. J.M. Khalifeh

Several Instances of a Resource Type [Z
daola
The algorithm employs several times varying data structures: 2

* Available: A vector of length m indicates the number of available resources

of each type.

* Allocation: An n*m matrix defines the number of resources of each type
currently allocated to a process. The column represents resource and rows
represent a process.

* Request: An n*m matrix indicates the current request of each process. If
request[i][j] equals R then process P ;is requesting R more instances of

resource type R.;.

11/15/2024 35

Operating Systems

Dr. J.M. Khalifeh

Detection Algorithm %

* Let Work and Finish be vectors of length m and n respectively. Initialize Work= ﬂwi[agg?lj"
Fori=0, 1,, n-1, if Request ;= 0, then Finish[i] = true; otherwise, Finish[i] = false.
* Find an index i such that both
a) Finish[i] == false
b) Request ;<= Work,
If no such i exists go to step 4.
“* Work= Work+ Allocation
Finish[i]= true
Go to Step 2.
 If Finish[i]== false for some i, 0<=i<n, then the system is in a deadlocked state. Moreover,
if Finish[i]==false the process P ;is deadlocked.

6666066666666666666060606H66606|6666066666666606666666666066

11/15/2024 36

P1, P2, P3, and P4

11/15/2024

38

© . .

© Example of Detection Algorithm Q}
g “* Five processes PO through P4; three resource types :m
g E A (7 instances), B (2 instances), and C (6 instances) o
g & % Snapshot at time T0:

g -é Allocation — Request Awvailable Resource Instances

©§ ABC ABC ABC 726

N ® 010 000 000

©

o, P 200 202 Sequence <P0, P2, P3, P1, P4> will

© s P2 303 000 result in Finish[i] = true for all i

O =

©= P3 211 100

O

©° P4 002 002

©

©

@ 11/15/2024 37

© . . .
© Example of Detection Algorithm IZ}
g % P2 requests an additional instance of type C .;‘fi."_'.,]“‘.
g E % Snapshot at time T0: o
g & Allocation — Request Awvailable Resource Instances

o B ABC ABC ABC 726

O o

o° P0 010 000 000

o State of system?

© P1 200 202 .

© Can reclaim resources held by process PO,

N 5 #2303 010 but insufficient resources to fulfill other
Q& P3 211 100 processes; requests

g E P4 002 002 Deadlock exists, consisting of processes

© a

©

©

©

Operating Systems

Dr. J.M. Khalifeh

Detection-Algorithm Usage Q}
el
* When, and how often, to invoke depends on:
» How often a deadlock is likely to occur?
» How many processes will need to be rolled back?
v one for each disjoint cycle

% If detection algorithm is invoked arbitrarily, there may be many cycles in
the resource graph and so we would not be able to tell which of the many

deadlocked processes “ caused” the deadlock,

6|6666066666666606666666666066

Operating Systems

Dr. J.M. Khalifeh

11/15/2024 39

ecovery from Deadlock: ,.
Process Termination I‘Zl

¢ Abort all deadlocked processes '
“* Abort one process at a time until the deadlock cycle is eliminated
% In which order should we choose to abort?

» Priority of the process

» How long process has computed, and how much longer to completion

» Resources the process has used

» Resources process needs to complete

» How many processes will need to be terminated

» Is process interactive or batch?

6660H66H666666666666600666606

11/15/2024 40

Operating Systems

Dr. J.M. Khalifeh

Recovery from Deadlock: Resource Preemption [Z

Gyli_all

% Selecting a victim — minimize cost
* Rollback — return to some safe state, restart process for that state

* Starvation — same process may always be picked as victim, include number

of rollback in cost factor

666066666666666666666666066

11/15/2024 41

